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The QGP on the Lattice

ε =

E

V
∝ nd.o.f.T

4 energy
density

“deconfinement” @ Tc

Karsch et al, 2001
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Hydrodynamics

Hydrodynamic behavior is quite general:
simply requires local equilibrium of

degrees of freedom → strong coupling

Depends on:
Initial state (geometry, energy density)

Equation of State (EOS), e.g. from lattice
Freezeout criteria

Deviations from ideal hydro also crucial 

∂µTµν ≡

∂Tµν

∂xµ

= 0

Tµν ≡ (ε + p)uµuν − gµνp

Images from trapped Li6 ions at Feshbach resonance (O’Hara et al)



The AdS/CFT connection

Strongly-coupled QGP is thought to be
dual to a 10D gravity theory:

first experimental connection to string theory



Viscosity Bound from AdS/CFT

111601 (2005). 

3. C. P. Herzog, J. High Energy Phys. 2002(12), 026 (2002); P. K.

Kovtun, D. T. Son, A. O. Starinets, J. High Energy Phys.

2003(10), 064 (2003); A. Buchel, J. T. Liu, Phys. Rev. Lett. 93,

090602 (2004). 

4. H. Nastase, http://arXiv.org/abs/hep-th/0501068

5. K. M. O’Hara et al., Science 298 2179 (2002).

6. J. Kinast, et al., Phys. Rev. Lett. 92, 150402 (2004).

The viscosity/entropy density ratio for helium, nitrogen and

water varies with temperature. Visible in the data is the infinite

slope at the gas–liquid phase transition for helium. The value of

the quotient obtained for systems dual to anti-de Sitter black

holes has been normalized to unity and is indicated by the hori-

zontal red line that lies well below the curves of the real-world

substances. (Adapted from ref. 2.)
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AdS/CFT predicts viscosity of strongly-coupled QGP:
deviation from perfect local equilibrium.

Depends on microscopic properties of medium.
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Quantitative study of jet modification (aka “quenching”):
multiple scattering of partons in the medium.

Modified jet FF sensitive to microscopic dynamics.
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Figure 5: Left: Fragmentation function for gluons onto pions at Ejet = 100 GeV. Our results are plotted
at Q2 = E2

jet, for three different mediums: vacuum (black), q̂ = 10 GeV2/fm (green) and q̂ = 50 GeV2/fm
(red) and for two different medium lengths: 2 fm (solid) and 6 fm (dashed). Right: Medium to vacuum
ratio of the gluon fragmentation functions for the same values as in the plot on the left.
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Figure 6: Left: Nuclear modification factor RAA computed with the obtained medium-modified fragmen-
tation functions for a fixed in-medium path-lenght of L = 6 fm. Right: Same but computed with more
realistic geometries leading to a distribution of path-lenghts over which the suppression is averaged. In
both cases, the experimental data is taken from [38].

This model assumes that a highly energetic parton losses a fractional amount of energy ε while
traveling through the medium and fragments with un-modified (vacuum) fragmentation functions
once it is outside. Any modification of the virtuality dependence of the fragmentation is neglected
and the probability distribution for the energy losses - quenching weights - has a discrete and a
continuous part,

P (ε) = p0δ(ε) + p(ε), (4.2)
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Impact parameter of each
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on particle production:
number of participating
nucleons & their “shape”

Will be measured event
by event, e.g. with ZDC
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The Crisis
• Hydrodynamics

Models work but no direct observation of primary degrees of freedom

3D viscous hydro only in early stages of development

Poor understanding of initial conditions & controversy over EOS

• Jet quenching
Theory is continually challenged by data, e.g. strong suppression of heavy 
flavor suggests non-perturbative dynamics

Can only study medium if we have a detailed understanding of how the 
primary hard scattered partons are affected by it

• Early thermalization
What is the system made of, and how and when does it thermalize and
achieve such low viscosity?



Heavy Ion Physics: The Collider Era

RHIC LHC

Luminosity frontier Energy frontier

RHIC and LHC programs are complementary
places to study the strongly-coupled medium:

LHC is the place for truly high pT jets and photons

STAR
PHENIX

PHOBOS 
(→ATLAS,CMS) BRAHMS

(→ATLAS,ALICE)



0 1 2 3 4 5 6 8 97-1-2-3-4-5-6-7-8-9

!

Inner Detector

0.003x0.1

0.025x0.025

0.05x0.025

0.2x0.1

0.1x0.1

0.1x0.1

Muon Spectrometer

 L
U

C
ID

  
Z

D
C

 E
M LAr EM

Hadronic Tile LAr

HAD

0
.1
x
0
.1

0
.1
x
0
.1

0.2x0.20.2x0.2

FCALFCAL

0.2x0.20.2x0.2

FCAL FCAL

LAr

HAD

 L
U

C
ID

  
Z

D
C

 H
A

D

  
Z

D
C

 E
M

  
Z

D
C

 H
A

D

0.1

x0.1

0.1

x0.1

The LHC & ATLAS

ATLAS acceptance unprecedented for HI
ATLAS Calorimetry far beyond anything at RHIC & LHC



0 1 2 3 4 5 6 8 97-1-2-3-4-5-6-7-8-9

!

Inner Detector

0.003x0.1

0.025x0.025

0.05x0.025

0.2x0.1

0.1x0.1

0.1x0.1

Muon Spectrometer

 L
U

C
ID

  
Z

D
C

 E
M LAr EM

Hadronic Tile LAr

HAD

0
.1
x
0
.1

0
.1
x
0
.1

0.2x0.20.2x0.2

FCALFCAL

0.2x0.20.2x0.2

FCAL FCAL

LAr

HAD

 L
U

C
ID

  
Z

D
C

 H
A

D

  
Z

D
C

 E
M

  
Z

D
C

 H
A

D

0.1

x0.1

0.1

x0.1

The LHC & ATLAS

ATLAS acceptance unprecedented for HI
ATLAS Calorimetry far beyond anything at RHIC & LHC

RHIC Upgrades



Calorimetry: ATLAS vs. ALICE
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ATLAS calorimeter dramatically exceeds 
ALICE capabilities for jets & photons



Progress Towards Pb+Pb
• LHC is essential for continued progress in the study of 

QGP properties, via bulk observables and especially 
high pT proceses

• ATLAS HI Working Group will cover all of the important 
physics topics for Pb+Pb @ the LHC

Global Variables (multipicities, elliptic flow)

Jets (light and heavy flavor)

Photon & Photon-Jet

Quarkonia (progress on J/ψ, Υ - not shown today)

Ultraperipheral collisions (using ZDC)

• Enormous progress since Stockholm



Global: Particle Multiplicity
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Charged Particle Spectra
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Measuring Jets in Pb+Pb

Jet fragmentation will be modified as each jet 
passes through length L of medium

Don’t expect too much energy outside nominal jet cone,
so merging PYTHIA jets into HIJING backgrounds --

large underlying event (minijet) fluctuations

jet

Δφ

ΔE
L

jet



Jet Finding in Pb+Pb: Cone Algo
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Jet Efficiency & Resolution 
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Rejecting Fake Jets in Pb+Pb
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Jet Spectrum
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Jet Fragmentation
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Importance of Photons in Pb+Pb

Using γ’s minimizes trigger bias by tagging the
Q2 of the primary hard process

Generally thought to be the golden channel to
study jet quenching.

jet γ

Δφ Δφ

ΔE
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jet jet



Photon Rates
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ATLAS Longitudinal Segmentation

ATLAS Technical Design Report

Calorimeter Performance 13 January 1997

92 2   Performance for electrons and photons

Figure 2-ii Readout granularity of the EM calorimeter.
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Photon Discrimination
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Efficiency & Rejection
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Cutting away backgrounds
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Signal to Background
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×

?
= Can we “build” a heavy

ion collision from
p+p collisions?

The importance of p+p data

900 GeV pbar+p

Npart       Ncoll
participants binary

collisions



An Embarassement of Riches (past)

With direct photons, you can
with hadrons (jet fragments), you can’t

scaling by binary collisions



With inclusive particles (integrated over y & pT), you can
(but A+A is 50% higher than p+p -- leading particle effect)

Npart = 
number of 

participants

partN
0 200 400

!
/2

 
pa

rt
 N"

 / 
chN

0

10

20

30

-e+e
pppp/

PHOBOS
p inelasticppp/

19.6 GeV

130 GeV

200 GeV

scaling by participant pairs



Heavy Ion Contibutions to p+p
• Crucial reference data for Pb+Pb

Inclusive charged multiplicities, transverse energy

Hadron spectra (esp. inclusive charged, neutrals)

Inclusive jets, dijet correlations

Inclusive photons, photons-jet correlations

• Well understood trigger is essential
(Truly) minimum bias triggered events, for comparison with soft observables 
by means of geometric quantities

Jet & egamma triggers (which will be modified to account for HI 
uncorrelated backgrounds)



Contributions to minbias p+p
• Some of us have been contributing to the minbias p+p 

group since April 2006

• We have been training our algorithms on p+p data in 
order to compare to Pb+Pb performane

Expect to test our techniques on jets and photons
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Contributions to minbias p+p
• Some of us have been contributing to the minbias p+p 

group since April 2006

• We have been training our algorithms on p+p data in 
order to compare to Pb+Pb performane

Expect to test our techniques on jets and photons
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ATLAS HI Working Group
• Substantial progress since last year

US group has written proposal for DOE

- submitted last week
Increased involvement from Russian groups

- IHEP, Moscow, Russia
- JINR, Dubna, Russia 

(workshop May 11-12, 2008)
- MePHI, Moscow, Russia

New groups ramping up

- Weizmann Institute, Israel
- Santa Maria University, Valparaiso, Chile
- University of Sao Paolo, Sao Paolo, Brazil.
- Pontificia Universidad Catolica de Chile, Santiago, Chile

Heavy Ion Physics with the
ATLAS Detector at the LHC

“Global Variables”

Charged-particle Multiplicity & Spectra

Transverse Energy

Elliptic Flow

2

Heavy Ion Physics with the
ATLAS Detector at the LHC

M.D. Baker, R. Debbe, P. Steinberg, F. Videbaek, S. White
Physics Department, Brookhaven National Laboratory,

Upton, NY 11973

S. Bathe
RIKEN/BNL Research Center, Brookhaven National

Laboratory, Upton, NY 11973

A. Angerami, B. Cole, N. Grau, W. Holzmann
Physics Department, Columbia University and Nevis Laboratories,

Irvington, NY 10053

J. Hill, A. Lebedev, M. Rosati
Physics Department, Iowa State University, Ames, IA 50011

A. Ajitanand, P. Chung, J. Jia1, R. Lacey
Chemistry Department, Stony Brook University, Stony Brook, NY 11794

(June 10, 2008)

1Also Physics Department, Brookhaven National Laboratory, Upton, NY 11973.



Summary and Conclusions
• LHC is essential for continued progress in the study of 

QGP properties, via bulk observables and especially 
high pT proceses

• Good progress on study of global variable, jets, 
photons and quarkonia with ATLAS

• Early p+p is essential to these studies, by establishing 
baseline reference data

Members of heavy ion group have been contributing to minbias effort

Will also contribute to jet and direct photon measurements 





Triggering on Jets in Pb+Pb
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From previous discussion, obvious that jet triggering is
complicated by background fluctuations

Expected to choose background-dependent RoI thresholds
to keep constant RoI/pevent

“Bins” are of successively higher background levels



kT Jet Finding
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